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Thyroid cancer is the most common endocrine malignancy with four major types distinguished on the basis of histopathological
features: papillary, follicular, medullary, and anaplastic. Classification of thyroid cancer is the primary step in the assessment of
prognosis and selection of the treatment. However, in some cases, cytological and histological patterns are inconclusive; hence,
classification based on histopathology could be supported by molecular biomarkers, including markers identified with the use
of high-throughput “omics” techniques. Beside genomics, transcriptomics, and proteomics, metabolomic approach emerges as
the most downstream attitude reflecting phenotypic changes and alterations in pathophysiological states of biological systems.
Metabolomics using mass spectrometry and magnetic resonance spectroscopy techniques allows qualitative and quantitative
profiling of small molecules present in biological systems. This approach can be applied to reveal metabolic differences between
different types of thyroid cancer and to identify new potential candidates for molecular biomarkers. In this review, we consider
current results concerning application of metabolomics in the field of thyroid cancer research. Recent studies show that
metabolomics can provide significant information about the discrimination between different types of thyroid lesions. In the near
future, one could expect a further progress in thyroid cancer metabolomics leading to development of molecular markers and
improvement of the tumor types classification and diagnosis.

1. Introduction

Thyroid carcinoma is a common endocrine malignancy in
the head and neck region. There are several histological
types of thyroid cancer, including papillary thyroid carci-
noma (PTC), follicular thyroid carcinoma (FTC), medullary
thyroid carcinoma (MTC), and anaplastic thyroid carcinoma
(ATC). Determining the type of thyroid cancer is crucial
for the assessment of prognosis and treatment selection.
Most patients with thyroid carcinoma are initially diagnosed
based on the result of fine needle aspiration cytology. Refined
diagnosis and classification/staging of this cancer are avail-
able after surgery based on histopathological examination
of the resected tissue. Unfortunately, in some cases, proper
classification could be problematic when histopathological
patterns are inconclusive [1]. Therefore, classical histopatho-
logical approach in the diagnosis of thyroid cancer could be
potentially supported by molecular biomarkers. Nowadays, a
number ofmolecular tests to confirm the diagnosis of thyroid
nodules have beenproposed,which includedpanel of somatic

mutations (e.g., RET-PTC, RAS) and immunocytochemistry
tests (e.g., BRAFV600E IHC) [2–4].This approach, although
not implemented widely in clinical practice yet, could change
the attitude towards classification of thyroid cancers in near
future [5]. Further application studies and clinical trials hold
great promise for molecular support of classical thyroid
cancers diagnosis. Such applications are likely to become a
component of the standard diagnostic approach for patients
with thyroid cancer. Therefore, there is an urgent need to
determine the most cost-effective protocols to utilize these
molecular-based diagnostic tools.

Metabolomics is one of the high-throughput “omics”
techniques, which beside genomics, transcriptomics, and
proteomics play an important role in systems biology. Met-
abolome is the final downstream product of gene expression
and therefore reflects changes in the transcriptome (mRNA)
and the proteome (proteins). Additionally, metabolomics
reflects phenotypic changes and alterations in pathophysio-
logical states of biological systems and therefore represents
the most “downstream” level of molecular life of a cell.
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Metabolomics targets different classes of low molecular
weight (MW < 1500Da) metabolites. In contrast to plants,
human metabolomes are relatively well known, defined,
and catalogued. The estimated number of components of
human metabolomes ranges from thousands to tens of
thousands, depending on type of a cell or tissue [6]. Changes
in metabolome composition reflect alterations in enzymes
concentration, cellular regulation, control of signalling path-
ways, genetic variations, and catabolic and anabolic reactions.
Therefore, metabolome most directly reflects the phenotype,
physiology, and molecular state of an organism [7]. The
main drawback of metabolomic studies, reflecting chemical
variability of this cellular component, is the fact that there
is no single analytical method allowing simultaneous mea-
surement of such broad spectrum of bioactive compounds.
Hence, different combinations of liquid (LC) and gas (GC)
chromatography coupled with mass spectrometry (MS) or
nuclear magnetic resonance (NMR) are the most accepted
and widely used analytical approaches in this field [8].

Metabolomics provides valuable information about me-
tabolism of malignant cells and has a great potential in
cancer research as well as in identification of novel diag-
nostic and prognostic markers [9]. Several studies proved
that metabolomics approaches allowed for classification of
different types of malignancies and identification of potential
biomarkers in the case of brain [10], breast [11], kidney
[12], and prostate [13] cancers. Although studies regarding
metabolomeof thyroid cancer are not very common, there are
several recent works showing that metabolomics approach
could help to discriminate different types of thyroid lesions
and provide significant information about their progression.
Here, we aim to review recent progress in the field of thyroid
metabolomics and discuss its contribution to understanding
thyroid tumorigenesis and potential refinement of molecular
classification of thyroid cancers.

2. Dilemmas in Thyroid Cancers Diagnosis

Palpable thyroid nodules occur in 4–7% of the population;
however, lesions found incidentally during ultrasonographic
examination suggest a prevalence of 19–67%. The classifica-
tion of such nodules includes numerous entities, both non-
neoplastic and neoplastic, benign and malignant. Although
thyroid tumors occur in roughly 5–10% of palpable nodules,
they represent the most common endocrine malignancy and
pose a significant challenge to pathologists, surgeons, and
oncologists [14]. Fine-needle aspiration (FNA) cytology is a
simple, rapid, inexpensive, andminimally invasive procedure
which plays an important role in decision-making regarding
clinical management of patients with thyroid nodules. Nowa-
days, the Bethesda system for reporting thyroid cytology
[15] is generally accepted. It has six diagnostic categories,
which correlate with risk of malignancy, and provides clear
management guidelines to clinicians to go for follow-up FNA
or surgery [16]. In general, many thyroid cancers can be
diagnosed with certainty using FNA, yet the method has
some limitations. For example, the nuclear and architectural
changes of somePTCs are subtle and focal.This is particularly

true of the follicular variant of PTC, which can be difficult
to distinguish from a benign follicular nodule. Other PTCs
may be incompletely sampled and yield only a small number
of abnormal cells. Some rare benign lesions like hyalinizing
trabecular tumors are frequentlymisdiagnosed by FNAcytol-
ogy as PTC [17, 18]. Histological distinguishing of follicular
carcinoma from follicular adenoma is based on the presence
of capsular or/and vascular invasion, whose features could
not be analyzed in cytological material. Moreover, the cyto-
logical features alone cannot reliably separate the detected
thyroid tumors into benign ormalignant; hence, patientswith
lesions are advised to undergo a diagnostic surgery. In fact,
less than 30% of such lesions were diagnosed after surgery as
malignant [19]. Therefore, several molecular tests for adjust-
ment of cytological diagnosis of thyroid nodules have been
proposed, which included panel of somatic mutations (e.g.,
BRAF and NRAS mutation and/or RET/PTC translocation)
and immunocytochemistry tests based on gene expression
signatures. BRAF gene mutation has been detected in 30%
to 80% of PTC [20]. BRAFV600E is very specific for PTC,
yet the failure to detect this mutation does not rule out
PTC. Nevertheless, analysis of BRAF mutations improved
diagnostic yield in cases of indeterminate cytology [21].
Another approach proposed recently to improve diagnostics
based on FNAmaterial included commercially available tests:
Afirma Gene Expression Classifier forThyroid FNA Analysis
and miRInformThyroid Test by Asuragen [22, 23].

When concerning postoperativematerial, a reliable histo-
pathological diagnosis can be reached by an experienced
pathologist by sole morphologic assessment for most cases of
thyroid tumors. However, several types of morphologic fea-
tures (e.g., the presence of nuclear atypia) are not sufficient for
reliable diagnosis ofmalignancy. For example, inHashimoto’s
thyroiditis and dyshormonogenesis, isolated cells with pleo-
morphic nuclei are very common. Furthermore, in the case of
tumors exhibiting unusual morphologic patterns or in order
to confirm the diagnosis of medullary carcinoma, additional
molecular tests (e.g., immunohistochemistry) are required.
Nevertheless, the currently used molecular tests have only
limited application in routine diagnosis of thyroid neoplasia.
Although several IHC tests (e.g., for cytokeratin-19 and
galectin-3) have been proposed for distinguishing malignant
from benign thyroid lesions, they frequently show high level
of false-positive and false-negative results [24]. Also molecu-
lar markers suggested for differential diagnosis of PTC versus
benign thyroid lesions or other thyroid tumors have been
widely tested in clinical practice. In fact, certain normal
thyroid follicles, nonneoplastic thyroid lesions (in particular
thyroiditis), and benign thyroid tumors can exhibit focal
or extensive staining for many of putative “thyroid cancer
markers.” For instance, 31–55% of adenomatous hyperplasia
could be positive for cytokeratin-19 or galectin-3. However,
even application of a panel of markers for IHC studies (e.g.,
Ck-19, Gal-3, and HBME-1) did not improve significantly
the diagnostic performance of the test [25]. The apparent
role of interactions between the tumor and its niche in
the tumor-thyroid interface represents additional diagnostic
challenge. Recently, promising results have been reported
for the usage of CD56 for differentiation of benign lesions
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and PTC [26–28]. Additionally, in the case of a follicular
patterned neoplasm lacking the cytoarchitectural features
of papillary carcinoma, the only feature that distinguishes
carcinoma from adenoma is the presence of unequivocal
vascular and/or capsular invasion in the former [29].

In conclusion, histopathological evaluation remains the
gold standard in the distinction between different types of
thyroid cancer, for example, between follicular carcinoma
and follicular adenoma. Various molecular tests have been
tested beside histological analysis, including immunohisto-
chemical assessment of proteins and genetic tests for gene
mutations, yet none of them proved its actual clinical appli-
cability. Therefore, there is a constant need for development
of unambiguous molecular markers which would bring a
real improvement in diagnosis and classification of thyroid
cancers.

3. ‘‘Omics’’ Approaches in Thyroid
Cancer Research

The term “omics” defines high-throughput approaches to
complex molecular composition of tissues enabling simul-
taneous analysis of thousands of genes/proteins. The main
assumption of systems biology is integration of different
“omics” datasets in order to obtain a broad perspective on the
complex processes occurring in a living organism. For this
purpose, platforms integrating genomics, transcriptomics,
proteomics, andmetabolomics data are constructed, enabling
better understanding of mechanisms involved in natural
history of cancer. Therefore, there is a generally expressed
expectation that such approach would also deliver new
biomarkers to be applied in clinical practice [30].

Microarray and next-generation-sequencing approaches
to the analysis of gene expression as well as mass spec-
trometry techniques used for the analysis of proteins and/or
peptides have delivered valuable information on various
types of human malignancies. The best example of how the
achievements of the genomics era could alter the clinico-
pathologic paradigm in classification of cancer types and
affect the decision making process in selection of a treatment
is breast cancer [31–34]. Similar “omics” approaches have
been tested during the last decade for many other malignan-
cies, including thyroid cancer. The first global microarray-
based gene expression profile of thyroid cancer was reported
in 2001 [35], when the gene signature characteristic for
papillary thyroid cancer was identified. Another microarray-
based study allowed for identification of the gene expression
signatures associated with mutations in BRAF, RAS, and
RET/PTC genes, as well as distinguishing the classic PTC
from the tall cell and follicular variants [36]. Comparative
analysis of the expression profiles in PTC and FTC, the
two most common forms of thyroid carcinoma, enabled
identification of the gene signatures characteristic for these
cancers; the differentiating signature includes five genes
(CITED1, CAV1, CAV2, IGFBP6, and CLDN10) [37]. Since
then many other works have been published describing
the differences between thyroid cancer and normal thyroid
tissue, as well as differences between types of thyroid neo-
plasia. These works revealed the significance of hundreds of

genes, including the key genes involved in thyroid hormone
biosynthesis [38, 39]. An important issue in the diagnostics of
thyroid cancer is differentiation between follicular adenoma,
follicular carcinoma, and the follicular variant of papillary
carcinoma. Currently, several biomarkers have proved their
applicability in solving this problem, including LGALS3,
hemoglobin, epsilon 1 (HBE1), keratin 19 (CK-19), and TPO
(thyroid peroxidase) [40].

Another powerful and promising approach in the search
of cancer biomarkers is proteomics based on mass spectrom-
etry tools [41–45]. Proteins can be extracted, identified, and
quantified from different cell and tissue sources. It should
be stressed that proteomics studies of thyroid represent a
real challenge due to high heterogeneity observed in this
tissue and very broad range between the most abundant (e.g.,
thyroglobulin) and the least abundant proteins. Important
disease-related proteins are likely to be discovered in the
subpicomolar range, which means that thyroid proteome
profiling methods must cover the dynamic range substan-
tially wider than 1010 [46]. Nevertheless, several papers
addressing the differences between thyroid lesions have
already been published. The comparative analysis of PTC
specimens matched with the normal thyroid tissue from
the same patients and benign follicular adenomas allowed
identification of three proteins, namely, S100A6 (an isoform
of S100 protein), peroxiredoxin 2, and heat shock protein
70 (HSP70), whose expression levels were markedly higher
in PTC tissue. Furthermore, the study confirmed overex-
pression of several PTC markers identified earlier by mRNA
study (e.g., galectin-3, cytokeratin-19, and cathepsin-B) [47].
Another study compared proteome profiles between thyroid
follicular adenomas and follicular carcinomas and revealed
statistically significant difference in abundance of 43 proteins
detected in thyroid tissue [48].

Genomics and proteomics studies have a significant
impact on general understanding of cancer-related processes
and have delivered several promising candidates for cancer
biomarkers. However, some limitations in the prognostic and
prediction power of gene/protein expression data have been
recognized in recent years. The challenge is that correlation
between the established mRNA and protein expression levels
and their real influence on phenotype of cancer has appeared
elusive in many cases. Therefore, other approaches directly
addressing phenotypic features of a cancer tissue, represented
by metabolomics, have a large potential in cancer studies.

4. Cancer Metabolism

Cancer progression is a complex process which involves
proliferation, hypoxia, angiogenesis, apoptosis, metastasis,
inflammation, and increased tolerance to reactive oxygen
species [49]. These tumor associated processes significantly
affect the primarymetabolic pathways; hence, cancer cells are
characterized by altered metabolism in comparison with the
normal differentiated cells [50], whose pathways are depicted
schematically in Figure 1.

Themajor difference between cancerous and normal cells
concerns the pathways involved in production of energy. In
healthy tissues, glucose is used for the production of NADH
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Figure 1: A simplified scheme of metabolic pathways in cancer cells
(modified from Heiden et al. [51] and Denkert et al. [11]). Thickness
of arrows indicates relative intensity of fluxes. PDH: pyruvate dehy-
drogenase; CL: citrate lyase; IDH1: isocitrate dehydrogenase 1.

and ATP during the tricarboxylic acid cycle (also known
as the Krebs cycle or the citric acid cycle) and oxidative
phosphorylation. In marked contrast, most cancer cells use
aerobic glycolysis, known as the Warburg effect, to produce
both energy and “building blocks” (amino acids, nucleotides,
and fatty acids) needed for extensive growth and proliferation
[51]. Otto Warburg was the first to observe that tumor cells
take up large amounts of glucose which is converted to
lactic acid [52]. Since then numerous studies have shown
the increased level of lactate and other glycolytic products in
cancer tissues [53–55], which is a phenomenon that can be
used in clinical practice for detection of tumors.

Cancer metabolome is also characterized by elevated
amounts of fatty acids and lipids, which are essential for
cell membrane building. Fatty acids are synthesized de novo
during cancer progression [56–58] which requires NADPH
and acetyl-CoA. In cancer cells, NADPH is produced via
increased glutaminolysis and the pentose phosphate pathway
(PPP) [59]. PPP, which is upregulated by glycolysis, provides
pentose phosphates which are essential also in the synthesis
of nucleotides. Moreover, increased glutaminolysis provides
acetyl-CoA in the reverse reaction of citrate synthase [60].
In addition to NADPH and acetyl-CoA, choline is the
next essential substrate required for lipids biosynthesis, and
accumulation of this compound in cancer cells was observed
in different studies [61]. Choline-containing compounds,
including phosphocholine, phosphatidylcholine, and glyc-
erophosphocholine, are the key components of a cell mem-
brane. Phospholipids are the major constituents of cell
membranes, determining their shape and fluidity [62]. Thus,
alterations in membrane phospholipids may influence key
aspects of cancer phenotype like invasiveness and metastatic
potential [63]. Changes in the levels of lipids and their
derivatives were observed in patients with different type of

malignancies, including breast [64], prostate [65], brain [66],
and thyroid [67] cancers. Saturated and unsaturated lipids
forming a cell membrane could move through the cytosol as
mobile droplets and accumulate in cytosolic vesicles. It was
reported that such mobile lipids were associated with tumor
progression [68]. Currently, it becomes widely accepted that
lipids associated with proliferation and inflammation have
apparent prognostic value in cancer diagnostics [69, 70].

In addition to lipids, there is a large group of small
metabolites, including amino acids, nucleotides, sugars, and
organic acids, important for cancer development. As a
consequence of the Warburg effect, the decreased level of
glucose and simultaneously increased levels of lactic acid and
alanine are observed, especially during hypoxia and ischemia
[71–73]. Levels of taurine and myo-inositol, other small
molecules involved in osmoregulation, are also affected in
cancer, which was reported in thyroid, prostate, colon, breast,
and ovarian cancers [11, 55]. Although elevated levels of
phospholipids and products of glycolysis characterize cancer
cell in general, it should be emphasised that specific levels
of various metabolites, including glycine, alanine, lactate,
citrate, nucleotides, and lipids, may depend on the type of
a cancer [12]. Consequently, metabolomics approach allows
distinguishing not only between the normal and cancer tissue
but also between different types and stages of malignancy.

There are several types of cancer whose metabolome
is relatively well-characterized. Breast cancer is generally
characterized by elevated level of total choline-containing
compounds (tCho), low glycerophosphocholine, and low glu-
cose, when compared to healthy tissues and benign tumors
[64, 74–77]. Furthermore, specific differences in features
of metabolome were observed between different histotypes
of breast cancer [13]. Another example of well-described
malignancies is brain tumors, whose different histological
types showed distinct metabolic profiles reflecting the levels
of alanine, threonine, creatine, glutamate, and phospho-
choline [78–80]. Also the metabolome of prostate cancer was
characterized, where high levels of tCho and phosphocholine,
along with increased amounts of alanine and lactate, were
observed [81]. Therefore, metabolomics has an apparent
potential in the studies focused on the discovery of cancer
biomarkers. Current research efforts are focused on the use
of metabolomics screening in preclinical and clinical studies
to improve diagnosis and support therapy. However, there is
still a significant need to establish the rigorous and effective
analytical protocols which could be widely accepted and find
their appropriate place in clinical trials.

5. Methods of Metabolomics

The number of metabolites present in a human organism
is currently estimated as approximately 17,000 (according
to The Human Metabolome Database-HMDB version 3.6),
yet this number is still expanding; hence, the exact figure
remains unknown. Due to extremely diverse physicochem-
ical properties of different metabolites and highly dynamic
changes in the composition of the metabolomes, there is
no single analytical method allowing examination of the
entire metabolome. Analytical approaches implemented in
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Figure 2: The general workflow of metabolomics analysis in cancer research.

this field vary in their specificity and sensitivity.Metabolomic
fingerprinting is the least precise approach which enables
rapid monitoring of the composition of low molecular
weight compounds, without the need for detailed iden-
tification. The most commonly used method is metabo-
lite profiling, allowing qualitative and quantitative anal-
ysis of a given group of metabolites. Targeted analysis
enables the most detailed study of a selected class of
compounds [10, 82]. Regardless of the chosen analytical
approach, there are several general steps in the metabolomics
studies, including sample collection and preparation, data
acquisition and processing, biostatistical analysis, and data
interpretation, which have been schematically depicted in
Figure 2. In order to obtain reproducible results that could
be compared between laboratories, strict compliance with
the standardized procedures of metabolomic analysis is
required. For this purpose, Metabolomics Standard Ini-
tiative (MSI) (http://www.msi-workgroups.sourceforge.net/)
published standard reporting requirements for each step of
metabolomics experiments [83–87].

The first and also the most critical steps in metabolomics
study are sample collection, storage, and preparation for
instrumental analysis. Blood (and its derivatives like serum)
and urine are the most commonly used specimens for
biomarker studies because of easy repetitive access and high
yield. Moreover, saliva, breath condensate, bronchial washes,
pancreatic juices, prostatic secretions, faeces, and other types
of physiological liquids or surrogate tissues can be also used
for metabolomics studies [12]. For different biofluids, the
standard sample volume required for most types of analyses
is within the range of 0.1 to 0.5mL. Most obviously, tissue
specimens are also widely examined in metabolomics studies
using mass spectrometry (MS) [88], imagingmass spectrom-
etry (IMS) [89], and nuclear magnetic resonance (NMR)
spectroscopy [90] techniques. However, tissue samples are

usually characterized by large heterogeneity and therefore
require more complex preparation procedures before anal-
ysis [91], including the use of laser-capture microdissection
(LCM) techniques [92]. The collected material can be fresh-
frozen and stored in the temperature below −80∘C, which
is a gold standard in the analysis of metabolites. However,
tissue specimens fixed in formalin and stored as formalin-
fixed paraffin-embedded (FFPE) samples (normally stored in
room temperature) are the most accessible source of clinical
material for molecular studies. This type of tissue material is
also suitable for certain metabolomic analyses when properly
collected and stored [93]. Each type of specimen is character-
ized by different features, for example, volatility, extraction
efficiency, and storage requirement. Nevertheless, due to
high sensibility of metabolites to exogenous environment,
maintaining low temperature and selection of the appropriate
method of extraction are essential in most of the cases.

Metabolites present in biological samples differ in terms
of molecular weight, thermostability, volatility, and polarity.
Therefore, it is impossible to isolate all of them simultane-
ously, using the same method of purification. Consequently,
the choice of the sample preparation method depends on
the character of the studied compound class and the type
of the analytical technique [94]. For isolation of a relatively
large group of metabolites, organic solvents of different
polarity (i.e., methanol, acetonitrile, chloroform, or hexane)
should be used for analyte extraction. Additionally, separa-
tion techniques based on gas chromatography require further
derivatization of analytes, which enhances their volatility
[95]. The techniques based on NMR require less complicated
procedures for sample processing, yet these analytical meth-
ods are less sensitive when compared to MS [96].

Themost commonly applied analyticalmethods in cancer
metabolomics studies are liquid or gas chromatography
coupled with mass spectrometry (LC/GC-MS) and nuclear
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magnetic resonance (NMR) spectroscopy [91]. These two
powerful techniques have both their advantages and limita-
tions. MS is a highly sensitive technique which allows iden-
tification and quantification of multiple metabolites, even at
very low concentrations, based on the mass to charge ratio
of the analyte ions generated in the spectrometer [97]. High-
resolution MSn experiments with sequential fragmentation
of the analyte ions permit obtaining structural information
about the studied compounds [98], yet not all metabolites
can be ionized using either positive or negative ionization
mode. Chromatographic techniques coupled with MS allow
separation of complex mixture of analysed compounds,
which is a typical problem in the case of biological materials.
GC/MS approach requires more time-consuming sample
processing, yet it is a reproduciblemethod allowing for access
to large databases for automatic identification of metabolites
[99]. NMR spectroscopy also enables identification of small
biomolecules based on the resonance spectra of the atomic
nuclei 1H, 13C, and 31P, which are commonly present in
metabolites [96]. Methods based on NMR are generally
less sensitive in comparison to MS techniques; however,
they can be used in analyses of liquid and solid samples
withminimal preparation stage. High-resolutionmagic angel
spinning (HR-MAS) NMR spectroscopy is widely tested for
metabolite-based cancer tissue classification [55, 100]. More
recently, direct analysis of spatial distribution of metabolites
in a tissue is an emerging approach in metabolomics. Spatial
distribution of metabolic markers can be analyzed both
in vitro and in vivo using localized magnetic resonance
spectroscopy imaging (MRSI) [101]. Another method for in
vitro differentiation of tissue regions based on theirmolecular
content is imaging mass spectrometry (IMS). IMS allows
for high-resolution determination of spatial distribution of
metabolites and lipids within the tissue, which was utilized
in several studies oriented on cancer metabolome [102–104].
The combination of different analytical methods, including
MS, NMR, and imaging techniques, apparently provides the
most powerful approach to metabolomics studies in current
and future applications [13].

The last stage of ametabolomics study is data analysis and
interpretation, including several different computation and
bioinformatics steps. The collected MS or NMR spectral data
requires multistep processing and normalization for further
identification of components and their quantification [105,
106]. Subsequently, the registered molecules are identified
by annotation at metabolomics databases, such as Human
Metabolome Database (HMDB) [107], METLIN [108], Golm
database [109], MassBank [110], or LIPID MAPS [111]. Next,
multivariate statistics, including supervised and/or unsu-
pervised methods, is required for pattern-recognition and
identification of multicomponent signatures or classifiers
characteristic for different biological states (e.g., tumor versus
normal tissue). Supervised methods (e.g., PLS-DA, OPLS-
DA) use the information of class membership to classify a
given dataset. Unsupervised approaches (e.g., PCA, HCA)
have been applied to investigate the innate variation in dataset
[112]. Nevertheless, biomarker candidates obtained in exist-
ing studies apparently require further testing and validation

using independent material and (most preferably) cross-
validation studies involving interlaboratory cooperation [113,
114].

6. Metabolomics in the Studies on
Thyroid Cancer

There are numerous works proving successful application of
genomics, transcriptomics, and proteomics in the field of
thyroid cancer research [2, 46, 115]. In contrast, metabolomic
studies concerning this malignancy are currently limited to
relatively few papers. However, the metabolomics approach
implemented in identification of biomarkers for diagnosis
and classification of thyroid tumors has been dynamically
expanding in recent years [55, 58, 67, 116–118]. The state-of-
the-art technologies includingMALDI-IMS (Matrix Assisted
Laser Desorption Ionization-Imaging Mass Spectrometry)
andHR-MASNMR (High-ResolutionMagic Angle Spinning
Nuclear Magnetic Resonance) have been used for the iden-
tification of a large group of metabolites present in thyroid
tissues, which are potential diagnostic biomarkers [58, 116].
In general, significant differences were observed between
the metabolomes of normal thyroid tissues and neoplastic
lesions, as well as between benign and malignant nodules.
Table 1 summarizes findings of key papers published in the
field.Major groups ofmetabolites, whose different abundance
in thyroid tissue and/or bloodwas observed between different
types of thyroid lesions, are listed there.

6.1. NMR-Based Analyses of Metabolome Discriminate Dif-
ferent Thyroid Lesions. Discrimination of different thyroid
lesions, such as nonneoplastic nodules, follicular adenoma,
and malignant tumors, based on metabolite profiles consti-
tutes a technically challenging but clinically relevant prob-
lem. The first studies demonstrating the potential of 1H
NMR to differentiate between normal and malignant thyroid
metabolites were conducted during the last decade of 20th
century [119–122]. Shortly afterwards, the potential of NMR
techniques in the analysis of lipid component of thyroid can-
cer was reported [123, 124]. More recently, HR MAS 1HMR
and MRI methods have been applied to distinguish between
benign and malignant thyroid nodules [125, 126]. In fact,
NMR metabolomic data processed with multivariate statis-
tical approaches allowed separation between different types
of thyroid lesions and several multicomponent metabolic
signatures/classifiers were proposed. Miccoli et al. [55] took
advantage of HR MAS 1HMR and noted elevated levels of
several amino acids (mainly phenylalanine and taurine) and
lactate combined with decreased levels of choline (and its
derivatives) and scyllo-/myo-inositol in malignant lesions
(PTC, FVPTC, and FTC) in comparison to the benign ones,
yet significant differences between the different cancer histo-
types were not detected. The observed changes in the levels
of lactates and inositols were in agreement with the changes
generally observed in many types of tumors. However, the
decrease in the content of choline and its derivatives was
not generally observed in cancer tissue [57, 127, 128], also in
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other works on thyroid cancer [58, 67, 118, 129, 130]. Deja
et al. [116] implemented 1H NMR technique in analysis of
aqueous tissue extracts of healthy thyroid tissue, nonneo-
plastic nodules, follicular adenomas, and malignant cancer.
The authors subjected acquired NMR data to multivariate
analysis including both unsupervised method (PCA) and
supervised modelling (OPLS-DA) and identified metabolites
characteristic for different types of thyroid lesions. Potential
biomarkers common to all thyroid lesions included ala-
nine, methionine, glutamate, glycine, tyrosine, phenylala-
nine, hypoxanthine, acetone, and lactate. The reduced levels
of scyllo- and myo-inositol, which act as osmoregulators,
were found to be specific for thyroid cancers. Moreover, a
decrease of lipids content in malignant lesions was detected
when compared to the healthy tissue. The increased level of
lactate was found not only in cancer tissue but also in other
thyroid lesions. In general, the observed features of the cancer
metabolome reflected dysregulation of the tricarboxylic acid
cycle, ammonia recycling, amino acids metabolism, and
osmotic regulation. Based on the specific metabolite profile
of follicular adenomas and significant differences between
healthy control, nonneoplastic nodules, and thyroid cancer,
the authors classified this lesion as an intermediate step in
thyroid cancer progression. This observation gives a promise
of new potentialmetabolomic biomarkers of different thyroid
cancer stages.

6.2. IMS Reveals Specific Features ofThyroid Cancer Lipidome.
Imaging mass spectrometry (IMS) has already been used
for simultaneous detection and spatial localization of lipids
in differentiated thyroid cancer tissues. Ishikawa et al.
[67] focused on distribution of phospholipids in papillary
carcinoma in comparison to normal thyroid tissue. They
identified phosphatidylcholines PC (16:0/18:1), PC (16:0/18:2),
and sphingomyelin SM (18:0/16:1), whose levels in PTC
were significantly higher than in nontumor tissue. More
recently, Guo et al. [58] presented the results of their work
where molecular tissue imaging using MALDI-FTICR-IMS
was combined with serum lipidome profiling. The study
was focused on phosphatidylcholines (PC), phosphatidic
acids (PA), and sphingomyelins (SM) in three types of
tissues: normal thyroid, benign tumors (thyroid adenoma
and multinodular goiter), and malignant tumors (papillary
and follicular thyroid carcinoma). Based on IMS analysis
performed on 36 tissue samples and LC/MS profiling of
almost 300 sera from three different groups of patients
(healthy, with malignant thyroid tumor, or with benign
thyroid tumor), the authors identified ten differentiating
lipid species: phosphatidylcholines PC (34:1), PC (36:1), PC
(38:6), phosphatidic acids PA (36:2), PA (36:3), PA (38:3), PA
(38:4), PA (38:5), PA (40:5), and sphingomyelin SM (34:1).
These potential biomarkers (or their subpanels; see Table 1)
detected in serum showed potential diagnostic power to
differentiate between cancer patients and healthy individuals
as well as between patients with malignant and benign
thyroid lesions. Moreover, the authors validated the previous
findings [56, 57] that de novo synthesis of fatty acids was
associated with tumorigenesis. For this purpose, expression

of key enzymes, SCD1 and FASN, involved in de novo fatty
acids synthesis [131, 132] was correlated with the levels of
monosaturated PC inmalignant, benign, and normal thyroid
tissues. Immunohistochemical detection of SCD1 and FASN
confirmed their association with high level of monosaturated
PC in thyroid cancer tissues.

The impact of lipid metabolism on thyroid tumorigenesis
has also been shown byYao et al. [118].The authors conducted
serum metabolic profiling of PTC, nodular goiter cases, and
healthy control using LC/MS technique. Significant changes
in the levels of amino acids, free fatty acids (FFA), and phos-
pholipids were observed between different groups of donors.
Moreover, the most significant differences between benign
and malignant nodules were observed in lipid metabolism.
The deregulation of lipid metabolism in a group of patients
with PTC was mirrored by an increased level of sphingosine,
FFA, 3-hydroxybutyric acid, and carnitine. Particularly, the
level of 3-hydroxybutyric acid, which is intermediate product
of fatty acid metabolism, was significantly higher in patients
with PTC than in benign tumors and healthy control cases.

7. Conclusions

Metabolomics has an apparent potential to expand our
knowledge on molecular factors involved in thyroid cancer.
Recent works have indeed shown significant differences in
metabolomes of normal and neoplastic thyroid tissues, as
well as between various stages of neoplasia. However, the
example of breast cancer studies clearly indicates the need for
combining themetabolomics informationwith other systems
biology datasets to provide the holistic view of the processes
ongoing in this endocrine malignancy. Such metabolomics
network has already been created for thyroid hormone
secretion pathway, which helped to identify the potential
drug targets essential in treatment of thyroid disorders such
as hypo- or hyperthyroidism [133, 134]. Along with the tech-
nological development of analytical tools (first of all MS- and
NMR-based spectral techniques), metabolomics becomes an
emerging research approach also in the field of thyroid cancer.
However, despite the promising value of initial studies, there
is a need for rigorous standardization of analytical methods
and validation of preliminary results using large independent
datasets. Moreover, there is an obvious necessity for integra-
tion of metabolomic data to genomics, transcriptomics, and
proteomics results to bring better insights into the cellular
mechanisms of thyroid cancer progression. Nevertheless, one
should expect that metabolomics studies may deliver in the
next years the basic knowledge not only on cancer-related
processes but also on novel biomarkers to be implemented
in diagnosis and classification of thyroid cancer.

Conflict of Interests

The authors declare that there is no conflict of interests that
could be perceived as prejudicing the impartiality of the
review.



International Journal of Endocrinology 9

Acknowledgments

The authors would like to thank Professor Barbara Jarzab
and Dr. Marta Gawin for their help in preparation of the
paper. This work was supported by the Polish Ministry of
Science (Grant no. UMO-2013/08/S/NZ2/00868 and Grant
UMO2012/07/B/NZ4/01450).

References

[1] W. C. Faquin, “The thyroid gland: recurring problems in
histologic and cytologic evaluation,” Archives of Pathology and
Laboratory Medicine, vol. 132, no. 4, pp. 622–632, 2008.

[2] M. Xing, B. R. Haugen, and M. Schlumberger, “Progress in
molecular-based management of differentiated thyroid cancer,”
The Lancet, vol. 381, no. 9871, pp. 1058–1069, 2013.

[3] O. Koperek, C. Kornauth, D. Capper et al., “Immunohistochem-
ical detection of the BRAF V600E-mutated protein in papillary
thyroid carcinoma,”TheAmerican Journal of Surgical Pathology,
vol. 36, no. 6, pp. 844–850, 2012.

[4] J. Zagzag, A. Pollack, L. Dultz et al., “Clinical utility of immuno-
histochemistry for the detection of the BRAF v600emutation in
papillary thyroid carcinoma,” Surgery, vol. 154, no. 6, pp. 1199–
1205, 2013.

[5] A. Greco, M. G. Borrello, C. Miranda, D. Degl’Innocenti, and
M. A. Pieroiti, “Molecular pathology of differentiated thyroid
cancer,” Quarterly Journal of Nuclear Medicine and Molecular
Imaging, vol. 53, no. 5, pp. 440–454, 2009.

[6] W. Weckwerth, “Metabolomics in systems biology,” Annual
Review of Plant Biology, vol. 54, pp. 669–689, 2003.

[7] R. D. Beger, “A review of applications of metabolomics in
cancer,”Metabolites, vol. 3, no. 3, pp. 552–574, 2013.

[8] J. L. Griffin and J. P. Shockcor, “Metabolic profiles of cancer
cells,” Nature Reviews Cancer, vol. 4, no. 7, pp. 551–561, 2004.

[9] J. L. Spratlin, N. J. Serkova, and S. G. Eckhardt, “Clinical
applications of metabolomics in oncology: a review,” Clinical
Cancer Research, vol. 15, no. 2, pp. 431–440, 2009.

[10] F. A. Howe, S. J. Barton, S. A. Cudlip et al., “Metabolic profiles
of human brain tumors using quantitative in vivo 1H magnetic
resonance spectroscopy,” Magnetic Resonance in Medicine, vol.
49, no. 2, pp. 223–232, 2003.

[11] C. Denkert, E. Bucher, M. Hilvo et al., “Metabolomics of human
breast cancer: new approaches for tumor typing and biomarker
discovery,” Genome Medicine, vol. 4, no. 4, article 37, 2012.

[12] T. Kind, V. Tolstikov, O. Fiehn, and R. H. Weiss, “A compre-
hensive urinary metabolomic approach for identifying kidney
cancerr,” Analytical Biochemistry, vol. 363, no. 2, pp. 185–195,
2007.

[13] E. Thysell, I. Surowiec, E. Hörnberg et al., “Metabolomic
characterization of human prostate cancer bone metastases
reveals increased levels of cholesterol,” PLoS ONE, vol. 5, no. 12,
Article ID e14175, 2010.

[14] M. J. Welker and D. Orlov, “Thyroid nodules,” American Family
Physician, vol. 67, no. 3, pp. 559–573, 2003.

[15] E. S. Cibas and S. Z. Ali, “The Bethesda system for reporting
thyroid cytopathology,” American Journal of Clinical Pathology,
vol. 132, no. 5, pp. 658–665, 2009.

[16] P. Mehra and A. K. Verma, “Thyroid cytopathology reporting
by the bethesda system: a two-year prospective study in an
academic institution,” Pathology Research International, vol.
2015, Article ID 240505, 11 pages, 2015.

[17] T. Kim, Y. L. Oh, K. M. Kim, and J. H. Shin, “Diagnostic
dilemmas of hyalinizing trabecular tumours on fine needle
aspiration cytology: a study of seven cases with BRAFmutation
analysis,” Cytopathology, vol. 22, no. 6, pp. 407–413, 2011.

[18] E. Bakuła-Zalewska, R. Cameron, J. P. Gałczyński, and H.
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“Increased choline levels coincide with enhanced proliferative
activity of human neuroepithelial brain tumors,” NMR in
Biomedicine, vol. 15, no. 6, pp. 385–392, 2002.

[67] S. Ishikawa, I. Tateya, T. Hayasaka et al., “Increased expression
of phosphatidylcholine (16:0/18:1) and (16:0/18:2) in thyroid
papillary cancer,” PLoS ONE, vol. 7, no. 11, Article ID e48873,
2012.

[68] A. C. Kuesel, S. M. Donnelly, W. Halliday, G. R. Sutherland, and
I. C. P. Smith, “Mobile lipids and metabolic heterogeneity of
brain tumours as detectable by ex vivo 1H MR spectroscopy,”
NMR in Biomedicine, vol. 7, no. 4, pp. 172–180, 1994.

[69] A. Z. Fernandis and M. R. Wenk, “Lipid-based biomarkers for
cancer,” Journal of Chromatography B: Analytical Technologies in
the Biomedical and Life Sciences, vol. 877, no. 26, pp. 2830–2835,
2009.

[70] K. Jelonek, M. Ros, M. Pietrowska, and P. Widlak, “Cancer
biomarkers andmass spectrometry-based analyses of phospho-
lipids in body fluids,” Clinical Lipidology, vol. 8, no. 1, pp. 137–
150, 2013.

[71] D.M. Brizel, T. Schroeder, R. L. Scher et al., “Elevated tumor lac-
tate concentrations predict for an increased risk of metastases
in head-and-neck cancer,” International Journal of Radiation
Oncology, Biology, Physics, vol. 51, no. 2, pp. 349–353, 2001.

[72] S. Walenta, T. Schroeder, and W. Mueller-Klieser, “Lactate in
solid malignant tumors: potential basis of a metabolic classifi-
cation in clinical oncology,” Current Medicinal Chemistry, vol.
11, no. 16, pp. 2195–2204, 2004.

[73] M.-B. Tessem, M. G. Swanson, K. R. Keshari et al., “Evaluation
of lactate and alanine as metabolic biomarkers of prostate
cancer using 1H HR-MAS spectroscopy of biopsy tissues,”
Magnetic Resonance in Medicine, vol. 60, no. 3, pp. 510–516,
2008.

[74] I. S. Gribbestad, B. Sitter, S. Lundgren, J. Krane, and D. Axelson,
“Metabolite composition in breast tumors examined by proton
nuclearmagnetic resonance spectroscopy,”Anticancer Research,
vol. 19, no. 3, pp. 1737–1746, 1999.

[75] B. Sitter, S. Lundgren, T. F. Bathen, J. Halgunset, H. E. Fjosne,
and I. S. Gribbestad, “Comparison of HR MAS MR spectro-
scopic profiles of breast cancer tissue with clinical parameters,”
NMR in Biomedicine, vol. 19, no. 1, pp. 30–40, 2006.

[76] L. Bartella, S. B. Thakur, E. A. Morris et al., “Enhancing
nonmass lesions in the breast: evaluation with proton (1H) MR
spectroscopy,” Radiology, vol. 245, no. 1, pp. 80–87, 2007.

[77] T. F. Bathen, L. R. Jensen, B. Sitter et al., “MR-determined
metabolic phenotype of breast cancer in prediction of lymphatic
spread, grade, and hormone status,” Breast Cancer Research and
Treatment, vol. 104, no. 2, pp. 181–189, 2007.

[78] C. L. Florian, N. E. Preece, K. K. Bhakoo, S. R. Williams, and
M. D. Noble, “Cell type-specific fingerprinting of meningioma
and meningeal cells by proton nuclear magnetic resonance
spectroscopy,”Cancer Research, vol. 55, no. 2, pp. 420–427, 1995.

[79] R. J. Maxwell, I. Mart́ınez-Pérez, S. Cerdán et al., “Pattern
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